Parameter optimization for wire-cut electrical discharge machining of stir cast AA6063 alloy/SiC (black and green) using Taguchi method with grey relational analysis

نویسندگان

چکیده

Abstract The present investigation aimed to determine the optimal parameters for wire-cut electrical discharge machining (WEDM) stir cast aluminum alloy AA6063 at 850°C reinforced with 10 wt.% green SiC (SiC g ) and black b particles. WEDM parameters, such as pulse on time ( T ON ), wire feed (WF) rate, flushing pressure (FP) of resultant AA6063/SiC composites, were optimized using Taguchi method L9 orthogonal array estimate responses, surface roughness metal removal rate. Further, through grey relational analysis, finest composites evaluated = 50 μs, WF rate 18 m/min, FP 3 MPa. With optimum obtained, conformational experiments conducted, scanning electron microscopic images recorded, along energy-dispersive X-ray (EDX) spectroscopic data worn surfaces debris. From EDX mapping machined surface, it was evident that displays a more polished than . However, applications requiring high better results

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Taguchi-grey relational based multi response optimization of electrical process parameters in electrical discharge machining

In modern machining process, optimization technique is used to find the optimal values of input parameters and the effect of those parameters on response variables. If response parameters are more than one, Taguchi method of optimization may give different set of optimal levels for each response. In the present study, Taguchi-grey relational approach based multi response optimization has been u...

متن کامل

Optimization of Process Parameters of Wire Electrical Discharge Machining Using Fuzzy logic Integrated with Taguchi Method

In this paper, fuzzy logic integrated with the Taguchi method is used to optimize Wire Electro Discharge Machining (WEDM) process with multiple quality characteristics. Rough machining with EDM gives poor surface finish and has micro cracks and pores. Finish machining gives better surface finish but with very poor machining speed (MRR). Spark gap width is one of the important performance measur...

متن کامل

Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method

Wire electrical discharge machining (WEDM) is extensively used in machining of conductive materials when precision is of prime importance. Rough cutting operation in WEDM is treated as a challenging one because improvement of more than one machining performance measures viz. metal removal rate (MRR), surface finish (SF) and cutting width (kerf) are sought to obtain a precision work. Using Taguc...

متن کامل

Application of Grey Relational Analysis to Machining Parameters Determination of Wire Electrical Discharge Machining

Grey relational analyses are applied to determine the suitable selection of machining parameters for Wire Electrical Discharge Machining (Wire-EDM) process. The Grey theory can provide a solution of a system in which the model is unsure or the information is incomplete. Besides, it provides an efficient solution to the uncertainty, multi-input and discrete data problem. According to the Taguchi...

متن کامل

Optimization of Machining Parameter for Turning of En 16 Steel Using Grey Based Taguchi Method

This paper presents the optimization of CNC turning parameters for EN 16 steel bar using the Grey Taguchi Method. A plan of experiments based on Taguchi’s L27 orthogonal array was established and turning experiments were conducted with prefixed cutting parameters for EN 16 steel bar using tungsten carbide tool. The turning parameters are cutting speed, feed rate and depth of cut and the respons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Materials Science Poland

سال: 2022

ISSN: ['2083-1331', '2083-134X']

DOI: https://doi.org/10.2478/msp-2022-0011